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In a previous work, we studied learning from stochastic examples by perceptrons with Ising weights in
the framework of statistical mechanics. Employing the one-step replica symmetry breaking ansatz, types
of behaviour of learning curves were classified according to a certain local property of the rules by which
examples were drawn. Further, the conditions for the existence of the perfect learning, together with
other behaviour of the learning curves, were given. In this paper, we give a detailed derivation of these
results and a further argument regarding perfect learning. We also present the results of extensive
numerical calculations.
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1. Introduction

In study of the problem of supervised learning from
examples by feed forward networks, learning curves of the
generalization error �g have been derived for various types
of networks.1) The generalization error is a false prediction
of students, and is an indicator of the accomplishment of
learning. From these studies, it came to be known that when
the number of examples p is large relative to the number of
synaptic weights N, that is, when � ¼ p=N is large, the
learning curves exhibit only a few types of behaviour2–9) For
example, learning curves of networks with continuous
weights all exhibit power law behaviour as

ð�g � �minÞ / ��� ;

where � depends on several properties of the system
including architecture and type of weight vectors, and �min
is the minimum generalization error. On the other hand, in
the case of discrete weights, it has been shown that, in
addition to power law behaviour, there exists perfect
learning (PL) for deterministic and realizable cases.10,11)

Here, ‘deterministic’ means that there exists no noise in the
process of learning, and ‘realizable’ means that the teacher’s
vector is also an element of the set of all students’ vectors.
Perfect learning is defined as the situation in which all of the
students weight vectors coincide with the teacher’s weight
vector for a finite value of �.

If perfect learning does not take place, students can never
realize the state of the teacher, but can only approach to it. In
the case that perfect learning takes place, the learning
procedure is completed at finite �. If we consider the
situation that the dimension N of weight vectors is finite but
sufficiently large, in order for students to complete learning,
a very large number of examples pð p� NÞ is necessary in
the former case, while only a number of examples of order N
is necessary in the latter case. Perfect learning can take place
even in the presence of external noise. Therefore, it is
important to determine the conditions for the existence of PL
in the case of discrete weights and in the presence of external
noise.

In a previous paper,12) we derived these conditions. The

results we obtained there are similar to those found by
Seung,13) who classified the learning behaviour of Ising
networks by introducing two quantities y and z that
characterize two important statistical properties of the
system. We deduced a different meaning for them and
determined the manner in which they are related. In addition,
in that paper, we investigated the asymptotic behaviour of
the learning curve.

The purpose of this paper is to present a detailed
derivation of the results obtained in ref. 12. Using the
replica method, we determine the necessary and sufficient
conditions for the existence of perfect learning and
conditions in the asymptotic region of �� 1 on the
appearance of power law learning curves in terms of �,
which represents a certain local property of the rules by
which examples are drawn.

We now describe the basic features of our model and
summarize our results.

We study supervised learning of stochastic relations by
Ising perceptrons. We consider a stochastic target relation
between an N-dimensional input vector x and a binary
output r 2 f1;�1g, which is represented by a conditional
probability prðrjxÞ. Input vectors x are normalized as
jxj ¼

ffiffiffiffi
N

p
, and prðrjxÞ is defined as a function of the inner

product of the input x and the optimal weight wo as

prðþ1jxÞ ¼ PðuoÞ ¼
1þ PðuoÞ

2
;

uo � ðx � woÞ=
ffiffiffiffi
N

p
:

ð1Þ

The output produced with this stochastic relation is
considered to be the output of a perceptron that is subject
to external noise. We call this target perceptron the ‘‘teacher
perceptron’’, with the weight vector wo. Students are pure
perceptrons; that is, a student perceptron with a weight
vector w answers r ¼ �1 to the input vector x according to
the rule

r ¼ sgnðuÞ;

where, w is an N-dimensional vector and u � ðx � wÞ=
ffiffiffiffi
N

p
.

In this paper, we consider Ising perceptrons, for which the
components of the weight vectors wo and w take discrete
values �1. Further, we choose the function PðuÞ to be non-�E-mail: uezu@ki-rin.phys.nara-wu.ac.jp
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decreasing w.r.t. u and to behave as

PðuÞ ’ a sgnðuÞjuj�ð� � 0Þ ð2Þ

near u ¼ 0. Further, Pð�uÞ ¼ �PðuÞ is stipulated, for
simplicity. The case � ¼ 0 corresponds to the output noise
model4) in which the output of the target perceptron
stochastically changes sign through the influence of noise
according to some probability distribution. The case � ¼ 1
corresponds to the input noise model,10) in which the input
of the target perceptron is corrupted by Gaussian noise with
zero mean. The Gibbs algorithm with temperature T is used
as the learning algorithm.

With the model described above, we obtained the
following results using the statistical mechanical method,
i.e. the replica method.

Conditions for PL

The necessary and sufficient conditions for the existence
of perfect learning are the following.
(1) 0 � � < 1=2 when 0 < 	 <1, where 	 is the inverse

temperature.
(2) Deterministic case. That is, the target relation is

deterministic, obeying the perceptron rule, and the
alogorithm is the minimum-error algorithm, i.e. the
Gibbs algorithm with 	!1.

Behaviour of learning curves

Employing the replica symmetric (RS) ansatz and the one-
step replica symmetry breaking (1RSB) ansatz, we found
that the behaviour of the generalization error �g can be
classified into the following three categories, according to
the value of �.
(1) For 0 � � < 1

2
, at � ¼ �max a first-order phase transi-

tion from the RS solution with positive entropy or from
the 1RSB solution to the PL solution takes place.

(2) For � ¼ 1
2
and large �, the 1RSB solution appears, and

�g for the 1RSB solution decays exponentially accord-
ing to

��g / e�3F0�;

where ��g � �g � �min and F0 is a constant.
(3) For � > 1

2
and large �, the 1RSB solution appears, and

�g for this solution decays according to a power law
with a logarithmic correction in accordance with

��g /
ln�

�

� � 1þ�
2��1

:

In the following section, we formulate the problem. In §3,
we analyse the RS solution. The conditions for the existence
of PL are derived in §4. The 1RSB solution is studied in §5.
The results of numerical calculations are given in §6.
Section 7 is devoted to summary and discussion.

2. Formulation

A set of p examples �p ¼ fðx1; ro1Þ; ðx2; ro2Þ; � � � ; ðxp; ropÞg is
obtained as follows. The vectors x� are chosen randomly
and independently from a uniform distribution on a hyper-
sphere of radius

ffiffiffiffi
N

p
centered at the origin in an N-

dimensional Euclidean space, and ro�ð¼ 1 or ¼ �1Þ is output
with the conditional probability prðro�jx�Þ for each x�. For a

given realization of examples �p, we define the energy
‘‘E½w; �p�’’ of a student with a weight vector w as the
number of false predictions, which is given as

E½w; �p� ¼
Xp
�¼1
�ð�ro�u�Þ; u� � ðx� � wÞ=

ffiffiffiffi
N

p
; ð3Þ

where �ðxÞ ¼ 1 for x � 0 and �ðxÞ ¼ 0 for x < 0. The
learning performance is represented by the generalization
error �g, which is defined as

�g � hPðuoÞð1��ðuÞÞ þ ð1� PðuoÞÞ�ðuÞi ð4Þ

¼ �min þ 2
Z 1

0

DyPðyÞH
Ryffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� R2

p
� �

;

�min ¼
1

2
�
Z 1

0

DyPðyÞ:

Here, h� � �i represents the average over examples and �min is
the minimum value of the generalization error, obtained with
the optimal weight wo. R is the overlap between the optimal
weight vector and the weight vector of a student,
R ¼ ðwo � wÞ=N. Also, as usual, we use Dy ¼
expð�y2=2Þdy=

ffiffiffiffiffiffi
2

p
and HðxÞ ¼

R1
x
Dy. From the eq. (4),

we find that, in particular, when �R � 1� R is small, the
relation

��g ¼ ð�g � �minÞ ’
2s

ð1þ �Þ
ffiffiffiffiffiffi
2

p ð2�RÞ
1þ�
2 ; ð5Þ

where s � a
R1
0
Dyy1þ�.

In this paper, we adopt the Gibbs algorithm with
temperature T as the learning algorithm. The minimum-
error algorithm, which minimizes the number of false
predictions for the presented examples, is obtained by taking
the T ! 0 limit.

From the ‘‘energy’’ defined by eq. (3), the partition
function Z with inverse temperature 	 is given by

Z ¼ Trw e�	E½w;�p� ¼ Trw� p
�¼1½e

�	 þ ð1� e�	Þ�ðr�u�Þ�;

where Trw represents a summation over all possible w. The
average free energy f per synaptic weight is calculated using
the standard recipe,

�	Nf ¼ hlnZi�p;wo ¼ limn!0
1

n
ðhZni�p;wo � 1Þ;

where h� � �i�p;wo denotes the average over quenched vari-
ables.

The quantity hZni�p;wo becomes a function of several
replica order parameters, namely the overlap between weight
vectors of students qab ¼ ðwa�wbÞ

N
, its conjugate q̂qab, the

overlap between the weight vector of a student and the
optimal weight vector Ra ¼ ðwo�waÞ

N
, and its conjugate R̂Ra.

(See Appendix A for a derivation of the free energy.)

3. RS Solution

Let us consider the RS solution. For this solution, no
quantity depends on the replica indices, and we write qab ¼
q; q̂qab ¼ q̂q;Ra ¼ R and R̂Ra ¼ R̂R. Then, the RS free energy fRS
becomes

�	fRSðq; q̂q;R; R̂R; 	Þ ¼ �
q̂q

2
ð1� qÞ � RR̂Rþ �K þ I; ð6Þ

where
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K �
Z
Dy2PðyÞ

Z
Du ln ~HH

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q� R2

p
u� Ryffiffiffiffiffiffiffiffiffiffiffi

1� q
p

 !

¼
Z
Du ln ~HHðu=QÞEðu=QÞ; ð7Þ

I �
Z
Dt ln½2 coshð

ffiffiffî
qq

p
t þ R̂RÞ�; ð8Þ

with

EðuÞ ¼
Z
Dy2Pð� Þ ¼ 1� e�v

2=2

�
Z 1

0

Dyðe�vy � evyÞPð�yÞ;

~HHðuÞ � e�	 þ ð1� e�	ÞHðuÞ;

 ¼ �yþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p
Qu ¼ �ðy� vÞ;

ð9Þ

and, finally,

� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

R2

q

s
; Q ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
1� q

q

s
; v ¼ �

Rffiffiffi
q

p
�
u; � ¼

�

Q
:

3.1 Saddle point equations (S.P.E.)
The saddle point equations are given by

q ¼
Z
Du tanh2ð

ffiffiffî
qq

p
uþ R̂RÞ; ð10Þ

R ¼
Z
Du tanhð

ffiffiffî
qq

p
uþ R̂RÞ; ð11Þ

q̂q ¼
�Q

1� q

Z
~DDuð ~’’ðuÞÞ2EðuÞ; ð12Þ

R̂R ¼ �
�ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q� R2
p Z

~DDu ~’’ðuÞ
Z
Dyy2Pð Þ

¼ �
�ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q� R2
p Z

~DDu ~’’ðuÞwðuÞ; ð13Þ

where

wðuÞ �
Z
DyyPð Þ ¼ e�v

2=2

�
Z 1

0

DyPð�yÞ½ðyþ vÞe�vy þ ðy� vÞevy�; ð14Þ

~DDu ¼
duffiffiffiffiffiffi
2

p e�Q
2u2=2; ~’’ðuÞ ¼

~HH0ðuÞ
~HHðuÞ

:

For later use, we give the expression of the entropy SRS:

SRS ¼ �	fRS � �	e�	J; ð15Þ

where

J ¼
Z
Dy2PðyÞ

Z
Du

H

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q� R2

p
u� Ryffiffiffiffiffiffiffiffiffiffiffi

1� q
p

 !
� 1

~HH

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q� R2

p
u� Ryffiffiffiffiffiffiffiffiffiffiffi

1� q
p

 ! :

Defining L as L ¼ K � 	e�	J, SRS becomes

SRS ¼ �
q̂q

2
ð1� qÞ � RR̂Rþ I þ �L; ð16Þ

where L is expressed as

L ¼
Z
DuEðu=QÞ ln½1þ ðe	 � 1ÞHðu=QÞ� � 	

Hðu=QÞ
~HHðu=QÞ

� �
:

ð17Þ

Also, the energy (training error) per synaptic weight is
expressed as

et ¼ ��e�	J: ð18Þ

3.2 Numerical calculations of the S.P.E. for the RS
solution

Here, we give the results of numerical calculations for the
RS solution.
Case (I): � ¼ 1

Here, we considered the case PðyÞ ¼ 1� 2HðyÞ, for which
�min ¼ 1

4
. In Fig. 1, we display the � dependences for T ¼ 1

of q, R and SRS, as well as  1 and  3, which are indicators
of AT-stability. The RS solution is stable only when both  1
and  3 are negative. From the numerical results, it seems
that as �!1, q and R tend to 1. In this case, the entropy
SRS becomes zero at some finite value of �, �sðTÞ, and  3
becomes zero at a different finite value of �, �ATðTÞ, for any
T .
Case (II): � ¼ 0

In this case, for the numerical calculations, we considered
PðyÞ ¼ 1

2
sgnðyÞ, for which �min ¼ 1

4
. In Figs. 2–4, for several

temperatures we display the � dependences of q, R, SRS,  1
and  3. The most interesting feature of these graphs is that
there are no solutions for which q and R tend to 1 as �!1.
As seen, there are two branches of solutions, which we call
‘‘branch I’’ and ‘‘branch II’’. Each solution is characterized

Fig. 1. The � dependences of several quantities for the RS solution with � ¼ 1 and T ¼ 1. (a) q and R (dotted curve). (b) SRS. (c)  1
and  3 (dotted curve).
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by its behaviour in the limit �! 0. In branch I, q and R tend
to 0, while in branch II, q and R tend to 1. (We attach the
superscript I and II to quantities evaluated in branches I and
II.) From our numerical results, we found that when T is
greater than some temperature, which we call Ts, solutions in
both branches are AT-stable and their entropies are positive.
However, when T < Ts, the entropy of branch II, SIIRS, is
negative for any �. Since SIIRS ¼ 0 at � ¼ 0, Ts is determined

by the condition that SIIRS changes sign for small � as T

passes through Ts. Also, there exists a critical value of
� ¼ �sðTÞ, such that for � > �sðTÞ we have SIRS < 0, and for
� < �sðTÞ we have SIRS > 0. In addition, we note that there
is a second critical value of T , TAT, and on branch I a
corresponding critical value of �, �ATðTÞ. When T < TAT,
 II3 is positive for all � and  I3 is positive for � > �ATðTÞ.
Contrastingly,  I1 and  

II
1 are negative for all T and �.

Fig. 2. The � dependences of q and R (dotted curve) for the RS solution with � ¼ 0.

Fig. 3. The � dependence of the entropy for the RS solution with � ¼ 0. The solid and dashed curves correspond to SIRS and SIIRS,

respectively.

Fig. 4. The � dependences of  1 and  3 (dotted curve) for the RS solution with � ¼ 0.  I1 and  I3 correspond to the curves starting

from �1 for small �.

J. Phys. Soc. Jpn., Vol. 71, No. 8, August, 2002 T. UEZU 1885



Case (III): general �
In this case, numerical calculations were carried out for

several values of � and T . As a typical result, we found that
when T ¼ 5 and � ¼ 0:3, q and R tend to 1 as �! 0. [See
Fig. 5(a).] In this case, the RS solution is AT-stable, and its
entropy is positive. There exists another case in which q and
R tend to 1 as �!1. [See Fig. 5(b).] In this case, SRS
decreases and becomes 0 at the finite value � ¼ �sðTÞ for
any T , and  3 becomes 0 at the finite value � ¼ �ATðTÞ for
any T .

For all the cases we considered in our numerical
calculations, we found that for any value of � and for
T < TAT, the relation �ATðTÞ > �sðTÞ holds, and �ATðTÞ and
�sðTÞ are increasing functions of T , as long as these
quantities are defined.

For any value of �, the entropy becomes negative for small
T . This implies that the RS solution is invalid. For this
reason, we have to impose the replica symmetry breaking
ansatz.

3.3 The limiting forms of the expressions for q̂q and R̂R as
q! 1 and R! 1.

In this section, in order to derive the asymptotic learning
curves and to allow for investigation of the conditions for the
existence of PL, we determine the limiting forms of q̂q and R̂R

for q! 1 and R! 1 as functions of �, 	 and � by
evaluating eqs. (12) and (13) in these limits. (See Appendix
B for the derivations.) For 0 < 	 <1, we find

q̂q ’
�ffiffiffiffiffiffiffi
�q

p g1;�ð�; 	Þ for � � 0; ð19Þ

R̂R ’ �
��ffiffiffiffiffiffiffi
�q

p g2;�ð�; 	Þ for � � 0; ð20Þ

while for 	 ¼ 1, we have

q̂q ’

�

ð�qÞ2
g3 (for � > 0, or for � ¼ 0 and k < 1),

�ffiffiffiffiffiffiffi
�q

p g3;D (in the deterministic case).

8>><
>>: ð21Þ

R̂R ’

�

�q
g4 (when PðyÞ is not constant for y > 0),

�ffiffiffiffiffiffiffi
�q

p g5ð�Þ (when PðyÞ � k for y > 0 and k < 1),

�ffiffiffiffiffiffiffi
�q

p g3;D (in the deterministic case).

8>>>>>>><
>>>>>>>:

ð22Þ

Note that R̂R ¼ q̂q in the deterministic case. In these
expressions we have used the following:

g1;�ð�; 	Þ �
1ffiffiffiffiffiffi
2

p
Z
du ~’’ðuÞ2E�ðu; �Þ;

E�ðu; �Þ ¼ 1 for � > 0; E0ðu; �Þ ¼ 1� k þ 2kHðu=�Þ;

g2;�ð�; 	Þ �
a�ffiffiffiffiffiffi
2

p ð1� e�	Þ
1

�
ð1þ ��2Þð��1Þ=2

�
Z 1

0

Dzz��1
Z 1

�1
Dt

1

~HH
�t � zffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2

p
 ! þ 1

~HH �
�t � zffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2

p
 !

2
66664

3
77775; for � > 0;

g2;0ð�; 	Þ ¼
kð1� e�	Þ



1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2

p Z 1

�1
Dx

1

~HH
�xffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2

p
 ! ;

Fig. 5. The � dependences of q and R (dotted curve) for the RS solution with T ¼ 5.
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g3 �
Z 1

0

Dyy2½1� PðyÞ�; g3;D �
2ffiffiffiffiffiffi
2

p
Z
Du

hðuÞ
HðuÞ

;

g4 �
Z 1

0

DyPðyÞðy2 � 1Þ; g5ð�Þ �
k



1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2

p Z
Dy

1

H
�yffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2

p
 ! :

Now, we examine the behaviour of g1 � g5 for later use. For
� � 0, g1;�ð�; 	Þ is finite if 0 < 	 <1 for all �, since HðxÞ is
bounded. For g2;�ð�; 	Þ with � > 0, if 0 < 	 <1, we have

g2;�ð�; 	Þ �
�0�

�� (for �� 1),

�1�
�1 (for �� 1),

Oð1Þ (for finite �),

8><
>: ð23Þ

where �0 ¼ a�ð1�e�	Þffiffiffiffi
2

p
R1
0
Dzz��1f 1

~HHðzÞ þ
1
~HHð�zÞg and �1 ¼ 2s	ffiffiffiffi

2
p .

In the case � ¼ 0, for 0 < 	 <1, g2;0ð�; 	Þ is finite, except
when �!1; that is,

g2;0 �

2k


tanhð	=2Þ (for �� 1),

k	


��1 (for �� 1),

Oð1Þ (for � of Oð1Þ).

8>>>><
>>>>:

ð24Þ

The quantities g3; g3;D and g4 are all finite if PðyÞ is not
constant (g3 ¼ 0 for PðyÞ � 1 for y � 0 and g4 ¼ 0 for
PðyÞ � const. for y � 0). For g5, we obtain

g5ð�Þ �

2k


(for �� 1),

k


� (for �� 1),

Oð1Þ (for � of Oð1Þ).

8>>>><
>>>>:

ð25Þ

Here, for later use, we give the limiting form of the
entropy SRS. First, L is given by

L ¼
ffiffiffiffiffiffiffi
�q

p
rð�; 	Þ; ð26Þ

where

rð�; 	Þ�
1ffiffiffiffiffiffi
2

p
Z
duE�ðu; �Þ ln½1þ ðe	� 1ÞHðuÞ�� 	

HðuÞ
~HHðuÞ

� �
:

ð27Þ

The function rð�; 	Þ is finite for 0 < 	 <1 and for all � and
all �. Then, as q! 1 and R! 1, for 0 < 	 <1 and for
any � and any �, SRS is given by

SRS ¼ �
q̂q�q

2
� ð1��RÞR̂Rþ �

ffiffiffiffiffiffiffi
�q

p
rð�; 	Þ þ I: ð28Þ

3.4 Solutions of the S.P.E. when q! 1 and R! 1.
The equations for �q ¼ 1� q and R are the following:

�q ¼ 2
@I

@q̂q
; R ¼

@I

@R̂R
:

Therefore, we have to evaluate I when q! 1 and R! 1,
which depends on � � R̂R

2q̂q
. We give expressions for I in

Appendix C. Using these, after some algebra, we obtain the
following types of behaviour.

(1) For � > 1
3
and �� 1, we have

� ’ �0
ln�

�

� � 2�
3��1

; �0 ¼
�

q̂q0ð3�� 1Þ

� � 2�
3��1

�q ’ q0�
1þ�
�
0

ln�

�

� �2ð1þ�Þ
3��1

; �R ’ R0�
1=�
0

ln�

�

� � 2
3��1

;

q̂q ’ q̂q0�
�1þ�
2�

0 �
4�
3��1ðln�Þ�

1þ�
3��1 ; R̂R ’ R̂R0�

�1��
2�

0 �
2�
3��1ðln�Þ�

1��
3��1 :

(2) For � ¼ 1
3
and �� 1, we have

�’ �0��
1
6e�

2
3
q̂q0�; �0¼

1

2
ffiffiffiffiffi
q̂q0

p
� �1

3

;

�q’ q0�
4
0�
�2
3e�

8
3
q̂q0�; �R’ R0�

3
0�
�1
2e�2q̂q0�;

q̂q’ q̂q0�
�2
0 �

1
3e
4
3
q̂q0�; R̂R’ R̂R0�

�1
0 �

1
6e
2
3
q̂q0�:

(3) For 0 < � < 1
3
and �� 1, we have

�’ �0
ln
1

�
�

0
BB@

1
CCA
� 2�
1�3�

; �0¼
�

q̂q0ð1� 3�Þ

� �� 2�
1�3�
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�q’ q0�
1þ�
�
0

ln
1

�
�

0
BB@

1
CCA
�2ð1þ�Þ
1�3�

; �R’ R0�
1=�
0

ln
1

�
�

0
BB@

1
CCA
� 2
1�3�

;

q̂q’ q̂q0�
�1þ�
2�

0 ��
4�
1�3� ln

1

�

� � 1þ�
1�3�

; R̂R’ R̂R0�
�1��
2�

0 ��
2�
1�3� ln

1

�

� � 1��
1�3�

:

(4a) For � ¼ 0, �� 1 and 0 . � < 1, we have

�R’
1ffiffiffiffiffiffi
2

p  ð�Þ�2 ln
1

�

� ��2
; �q¼ 2��R;

R̂R’
2

�
ln
1

�
ln
1

�

� �3=4" #
; q̂q¼

R̂R

2�
;

where � is determined by the following equations
through �:

g2;0ð�; 	Þ
2g1;0ð�; 	Þ

¼
1

1þ �2
; ð29Þ

� ¼
1

1þ �2
: ð30Þ

(4b) For � ¼ 0, �� 1 and 1 � �, we have

�R’ 2a�
1

�
ln
1

�

� ��2
; �q¼ 2�R;

R̂R’
2�

2�� 1
ln
1

�
ln
1

�

� �
; q̂q¼

R̂R

2�
;

where � is given by

� ¼
g2;0ð0; 	Þ
2g1;0ð0; 	Þ

: ð31Þ

Now, let us check the conditions under which the above
forms of �q;�R; q̂q and R̂R are valid. First, we consider � > 0.
Here, we only have to see the conditions for �� 1;�R� 1

and R̂R� 1, because �q� 1 and q̂q� 1 follow from the
relations �q ’ 2�R

1þ�2 and q̂q ¼ R̂R
2�. For � > 1=3, these condi-

tions are

g
ð��1Þ=�
1;� 	1=��

ln�

�
(for �� 1),

g�21;� 	
3�

ln�

�
(for �R� 1),

g2ð��1Þ1;� 	2�
ðln�Þ1��

�2�
(for R̂R� 1).

As long as �� 1, these conditions are satisfied. For
� ¼ 1=3, the condition is q̂q0 > 0, and this is automatically
satisfied for 	 > 0. For 0 < � < 1=3, the conditions are

g
ð��1Þ=�
1;� 	1=��

ln
1

�
�

(for �� 1),

g�21;� 	
3�

ln
1

�
�

(for �R� 1);

g2ð��1Þ1;� 	2 �
ln
1

�

� �1��
�2�

As long as �� 1, these conditions are satisfied. We have
thus found the situations in which �� 1;�R� 1 and R̂R�
1 are satisfied. Next, let us consider � ¼ 0. Here, for case
(4a), the condition is that there is a positive solution � of eq.
(29), and for case (4b), the condition is � � 1, where � is
defined by the eq. (31). When 	� 1, � satisfies

��
k
ffiffiffi
2

p

	
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2

p [for the case (4a)]

�
k
ffiffiffi
2

p

	
[for the case (4b)]

Thus, �� 1 holds in both cases (4a) and (4b). Therefore,
Case (4a) does not exist for high temperatures. In the other
extreme, when 	� 1, in both cases (4a) and (4b), g1;0
becomes very large, but g2;0 does not. Thus, from eqs. (29),
(30) and (31), we obtain �� 1 in both cases (4a) and (4b).
Hence, the case (4b) is impossible for low temperatures.

The results obtained in this section suggest that for � <
1=3 PL exists, and the solution with q < 1 exists only for
� 2 ½0; �max�, where �max is some positive finite number, and
that for � � 1=3 PL does not exist, and the solution with
q < 1 exists for any �. However, as is shown in the next two
sections, this conclusion is incorrect. One reason that this
conclusion is incorrect is that when the solution with q < 1
exists for any �, the entropy of the RS solution becomes
negative for T ! 0. Another reason is that the actual
condition for the existence of PL is not � < 1=3 but, rather,
� < 1=2.

In the next section, we investigate the necessary and
sufficient conditions for the existence of PL.

4. Perfect Learning

In PL, the weight vectors of the students coincides with
the optimal weight vector (i.e. w ¼ wo) for a finite value of
�. In this case, q ¼ 1 and R ¼ 1. From eqs. (10) and (11), the
necessary and sufficient conditions to realize q ¼ 1 and R ¼
1 with a finite value of � are

R̂R!1 and � �
R̂Rffiffiffî
qq

p !1: ð32Þ

In the case of PL, we impose the further condition q ¼ R

when the limits q! 1 and R! 1 are taken, because in PL,
the weight vectors of the teacher and students coincide.

Therefore, in this case, we have � ¼
ffiffiffiffiffiffiffiffiffi
q�R2
1�q

q
¼ ffiffiffi

q
p ¼ 1, and

thus � ¼ Q ¼
ffiffiffiffiffiffiffi
�q

p
. Hence, for 0 < 	 <1, we obtain from

1888 J. Phys. Soc. Jpn., Vol. 71, No. 8, August, 2002 T. UEZU



eqs. (19) and (20),

q̂q ’
�ffiffiffiffiffiffiffi
�q

p g1;�ð1; 	Þ; ð33Þ

R̂R ’ �ð�qÞð��1Þ=2g2;�ð1; 	Þ; ð34Þ

while for 	 ¼ 1, we have

q̂q ’

�

ð�qÞ2
g3 (for � > 0, or for � ¼ 0 and k < 1),

�ffiffiffiffiffiffiffi
�q

p g3;D (in the deterministic case).

8>><
>>: ð35Þ

R̂R ’

�

�q
g4 (when PðyÞ is not constant for y > 0),

�ffiffiffiffiffiffiffi
�q

p g5ð1Þ (when PðyÞ � k for y > 0 and k < 1),

�ffiffiffiffiffiffiffi
�q

p g3;D (in the deterministic case).

8>>>>>>><
>>>>>>>:

ð36Þ

In the deterministic case R̂R ¼ q̂q holds.
Let us now determine what is derived when these

conditions are imposed. First, we consider the case
0 < 	 <1. In this case, both g1;�ð1; 	Þ and g2;�ð1; 	Þ are
finite for � � 0. (See subsection 3.3.) Thus, from (33) and
(34), the necessary and sufficient conditions to realize q̂q!
1; R̂R!1 and �!1 as q! 1 and R! 1 for any � are

q̂q!1 (for any � � 0 and 0 < 	 <1), ð37Þ

R̂R!1 (for 0 � � < 1 and 0 < 	 <1), ð38Þ

� ’ �1=2ð�qÞð2��1Þ=4
g2;�ffiffiffiffiffiffiffi
g1;�

p

!1 (for 0 � � < 1=2 and 0 < 	 <1). ð39Þ

Hence, the necessary and sufficient condition for PL is
0 � � < 1=2. Next, we consider the case 	 ¼ 1. Here, when

PðyÞ is not constant for y > 0, the quantities g1 � g4 are all
finite. Then, from (35) and (36), we find that both q̂q and R̂R

tend to infinity and � ’
ffiffiffiffi
�
g3

q
g4, which is finite. Thus, in this

case PL does not exist. Then, when PðyÞ � k < 1 for y > 0,
� ’

ffiffiffiffiffiffiffiffiffiffi
��q

p g5ffiffiffiffi
g3

p . Since g5 is finite for finite �, � tends to 0.
Thus, here again, PL does not exist. Finally, in the
deterministic case, from (35) and (36), q̂q ¼ R̂R and � ¼

ffiffiffî
qq

p

tend to infinity, since g3;D is finite. Hence, here PL does
exist.

Summarizing the above results, we conclude that PL
exists in the case that 0 � � < 1=2 with 0 < 	 <1 and in
the deterministic case.14)

For the entropy SPL and the free energy fPL in the case of
PL, we obtain the following reasonable results:

SPL ¼ 0; fPL ¼ ��min:

(See Appendix D.)

5. 1RSB Solution

Although we adopt the Gibbs algorithm as the learning
strategy, we are also interested in the minimum-error
algorithm. In the minimum-error algorithm we choose
weights so as to minimize the number of errors, and for
that reason we only have to take the limit T ! 0. However,
as shown in §3 using the results of numerical calculations,
for the RS solution, the entropy becomes negative for small
T . Thus, we have to consider the breaking of the replica
symmetry.15) For the 1RSB solution, the matrix qab is
divided into ðn=mÞ2 small matrices of dimension m� m. All
components of each of the off-diagonal such matrices are q0,
and all components of each of the diagonal matrices are q1,
except for the diagonal components, which are 0. The
structure of the matrix q̂qab is idential, with the values q̂q0 and
q̂q1 replacing q0 and q1. Further, we stipulate Ra ¼ R and
R̂Ra ¼ R̂R. Then, the 1RSB free energy, f1RSB, is given by

� 	f1RSBðq0; q̂0q0; q1; q̂1q1;R; R̂R;m; 	Þ

¼ �
q̂1q1

2
ð1� q1Þ þ

m

2
ðq̂0q0q0 � q̂1q1q1Þ � RR̂R ð40Þ

þ
�

m

Z
Dy2PðyÞ

Z
Dz0 ln

Z
Dz1 ~HH

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q0 � R2

p
z0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q1 � q0

p
z1 � Ryffiffiffiffiffiffiffiffiffiffiffiffiffi

1� q1
p

 !" #m

þ
1

m

Z
Dz0 ln

Z
Dz1 2 cosh

ffiffiffiffiffi
q̂0q0

p
z0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q̂1q1 � q̂0q0

p
z1 þ R̂R

" #h im
:

Next, following Krauth–Mézard,16) we take the limits q1 ! 1 and q̂1q1!1. Then we obtain

f1RSBðq0; q̂0q0; q1 ¼ 1; q̂1q1 ¼ 1;R; R̂R;m; 	Þ ¼ fRSðq0;m2q̂0q0;R;mR̂R; 	mÞ: ð41Þ

From this relation, the equations for q0; q̂0q0;R; R̂R and m

become a coupled set of equations consisting of the saddle
point equations for the RS solution, along with the equation
SRS ¼ 0, where SRS is the entropy for the RS solution. Let us
denote the solutions of these coupled equations by q ¼ qc,
q̂q ¼ q̂qc, R ¼ Rc, R̂R ¼ R̂Rc and 	 ¼ 	c. Then, the 1RSB
solutions are expressed by q0 ¼ qc, q̂q0 ¼ ð 		c Þ

2q̂qc, R ¼ Rc,
R̂R ¼ 	

	c
R̂Rc and m ¼ 	c

	 . Thus, to obtain the T ! 0 limit, we
only have to know the solution at T ¼ Tc � 	�1c .

5.1 Numerical calculation of the S.P.E. for the 1RSB
solution

Here, we give the results of numerical calculations for the
1RSB solution.
Case (I): � > 0

As a special case, we treated PðyÞ ¼ 1� 2HðyÞ, that is, the
case � ¼ 1. This is the same PðyÞ as that used for the RS
solution. In Fig. 6, we plot the � dependence of Tc, while in
Fig. 11, we plot those of q0;R and ��g. As is seen from
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these figures, the 1RSB solution seems to extend to � ¼ 1.
To study asymptotic behaviour, representing each of the
quantities �q, �R, Tc and ��g by A, we assume that each
can be written as

lnA ¼ a1 þ b1 ln�;

lnA ¼ a2 þ b2 ln
�

ln�

� �
;

where a1; a2; b1 and b2 are to be determined for �q, �R, Tc
and ��g separately. Similarly, representing q̂q and R̂R by A, we
assume that each can be written as

A ¼ a1 þ b1 ln�;

A ¼ a2 þ b2 ln
�

ln�

� �
:

In Table I, we list the values of ai and bi for these quantities.
In particular, we note that Tc !1 as �!1. Further, we
obtained �q

�R
� 1:7 and R̂R

q̂q
� 2:5. As an example, we display

the asymptotic behaviour of ��g in Fig. 7.

Case (II): � ¼ 0
Here, we considered the same function PðyÞ as in the � ¼

0 case for the RS solution, PðyÞ ¼ 1
2
sgn ðyÞ. We display the

� dependence of Tc in Fig. 8 and that of q0;R and ��g in
Fig. 16. In the 1RSB solution, there exist two branches, I
and II. In branch I all of these quantities become identical to
those for the RS solution with T ¼ 0 as �! �sð0Þ. In
branch II, q and R tend to 1 as � tends to 0.

With the results of our numerical calculations, it is
difficult to determine whether case of (a) 0 . � < 1 or (b)
� � 1 holds in branch II, because we could obtain solutions
only for � & 0:45. As for Tc, it seems that Tc converges to a
finite value as �! 0. In both branches,  1 and  3 are
negative; that is, the RS solution at T ¼ Tc is AT-stable. For
the free energy, the relation f I1RSB < f II1RSB holds. (See
Fig. 9.)

5.2 Limiting behaviour as q! 1 and R! 1
As is suggested by the above numerical results, and is

considered below, the limiting behaviour of 	c as q! 1 and
R! 1 differs in the cases � ¼ 0 and � > 0. Therefore we
discuss these cases separately.
Case (I): � > 0

As shown in Fig. 6, the numerical result suggests that
	cð¼ 1

Tc
Þ ! 0 as �!1. Therefore we consider the case

	c � 1. For 	� 1, fRS and SRS take the following forms in
the asymptotic region (see Appendix E):

Table I. Coefficients ai and expontents bi evaluated for 200 � � � 381
and the theoretical value b2;th.

�q �R Tc ��g R̂R q̂q

a1 2.5 2.2 �1:8 1.1 �0:49 0.89

b1 �1:5 �1:5 0.81 �1:5 1.1 0.28

a2 1.1 0.88 �1:1 �0:27 0.50 1.1

b2 �1:8 �1:9 0.99 �1:9 1.4 0.35

b2;th �2 �2 1 �2 1 1

Fig. 7. Numerically obtained behaviour of ��g for PðyÞ ¼
1� 2HðyÞð� ¼ 1Þ. A line segment with slope b1 determined by the least

square methods is also plotted.

Fig. 8. The � dependence of Tc for � ¼ 0. Solid curve: 1RSB in branch I.

Dashed curve: 1RSB in branch II.

Fig. 6. Numerically obtained behaviour of Tc for PðyÞ ¼
1� 2HðyÞð� ¼ 1Þ.

Fig. 9. The � dependence of the free energy. Solid curve: f I1RSB. Dashed

curve: f II1RSB.
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� 	fRS ¼ �
q̂q

2
ð1� qÞ � RR̂Rþ I

� �	 �min þ
2s

ð1þ �Þ
ffiffiffiffiffiffi
2

p ð2�RÞ
1þ�
2 �

	
ffiffiffiffiffiffiffi
�q

p

2
ffiffiffi
2

p
� �

;

ð42Þ

SRS ¼ �
q̂q

2
�q� R̂RRþ I � �	2

ffiffiffiffiffiffiffi
�q

p

2
ffiffiffi
2

p : ð43Þ

First, we show that for 0 . � < 1, no consistent 1RSB
solution exists in the presently considered case in which
� > 0 and 	� 1. The saddle point equations are

�q ’
2hð�Þ ð�Þffiffiffiffiffi

q̂cqc
p ; ð44Þ

�R ’
�q

2�
; ð45Þ

q̂qc ¼ q̂q0�	
2
c=

ffiffiffiffiffiffiffi
�q

p
; ð46Þ

R̂Rc ¼ R̂R0�	cð�RÞð��1Þ=2; ð47Þ

q̂q0 ¼
1

2
ffiffiffi
2

p ; R̂R0 ¼
sffiffiffi


p 2�=2;

where �q ¼ 1� qc and �R ¼ 1� Rc. Then, the condition
that the entropy is zero becomes

�q ’
4 ð�Þhð�Þ

R̂R�
: ð48Þ

From eqs. (44) and (48), we obtain �2 ¼ 2. However, since
we consider the case R ’ 1 and q ’ 1, � should be large.
Thus, the case 0 . � < 1 is not possible. Next, we consider
the case 1 � �. In this case, I ’ R̂Rþ a�e

�2ðR̂R�q̂qÞ. Then, fRS
and SRS become

�	cfRS ’ �
q̂qc

2
�qþ R̂Rc�Rþ a�e

�2ðR̂Rc�q̂qcÞ

� �	c �g �
	c

2
ffiffiffi
2

p
ffiffiffiffiffiffiffi
�q

p� �
;

SRS ’ �
q̂qc

2
�qþ R̂Rc�R�

�	2c
2

ffiffiffi
2

p
ffiffiffiffiffiffiffi
�q

p
þ a�e

�2ðR̂Rc�q̂qcÞ:

The saddle point equations for q̂q and R̂R here are the same as
in the case 0 . � < 1, while those for q and R and the
condition for zero entropy are

�R ¼ 2a�e�2ðR̂cRc�q̂cqcÞ; ð49Þ

�q ¼ 2�R; ð50Þ

SRS ’ �
q̂qc

2
�qþ R̂Rc�R� �	2c q̂q0

ffiffiffiffiffiffiffi
�q

p
þ a�e

�2ðR̂Rc�q̂qcÞ ¼ 0:

ð51Þ

Since R̂Rc � 1 and q̂qc � 1, using eqs. (46), (49) and (50), we
obtain from eq. (51) the relation

R̂Rc ¼ 3q̂qc: ð52Þ

That is, � ¼ 3=2 and a� ¼ 1. Thus, from eqs. (46), (47) and
(52), we obtain

q̂qc ¼ F0�e
�2ð2��1Þq̂qc ;

which implies

ln q̂qc ¼ ln�� 2ð2�� 1Þq̂qc þ lnF0;

where F0 ¼ 4s222�=9
ffiffiffi
2

p
. Thus,

q̂qc ’
ln�

2ð2�� 1Þ

for 2�� 1 6¼ 0. This implies that q̂qc tends to infinity when �
tends to infinity for � > 1=2 or � tends to 0 for � < 1=2. For
� ¼ 1=2, q̂qc ¼ F0�. Therefore, we obtain the following
results.

(1) In the case � > 1
2
, as �!1,

�R ’ 2
ln�

�

� � 2
2��1

; �q ’ 2�R; ð53Þ

R̂Rc ’
3

2ð2�� 1Þ
ln

�

ln�

� �
; q̂qc ’ R̂Rc=3; 	c ’

4
ffiffiffi


p
s

3
2�

ln�

�

� � �
2��1

; ð54Þ

��g ’ �0ð�RÞ
�þ1
2 ’ �02

�þ1
2
ln�

�

� � �þ1
2��1

; �0 ¼
2s

ð1þ �Þ
ffiffiffiffiffiffi
2

p 2
1þ�
2 : ð55Þ

(2) In the case � ¼ 1
2
, as �!1,

�R ’ 2e�4F0�; �q ’ 2�R; ð56Þ

R̂Rc ’ 3F0�; q̂qc ’ R̂Rc=3; 	c ’
4s

3

ffiffiffiffiffiffi
2

p
e�F0�; ð57Þ

��g ’ �02
3
4e�3F0�: ð58Þ

(3) In the case 0 < � < 1
2
, as �! 0,

�R ’ 2
�

ln
1

�

0
BB@

1
CCA

2
1�2�

; �q ’ 2�R; ð59Þ
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R̂Rc ’
3

2ð1� 2�Þ
ln
1

�
ln
1

�

� �
; q̂qc ’ R̂Rc=3; 	c ’

4
ffiffiffi


p
s

3
2�

�

ln
1

�

0
BB@

1
CCA

�
1�2�

; ð60Þ

��g ’ �02
�þ1
2

�

ln
1

�

0
BB@

1
CCA

1þ�
1�2�

: ð61Þ

Thus, when 0 < � < 1=2, for large � there is no solution
such that qc ! 1 and Rc ! 1. This implies that there is a
value � ¼ �max such that for � > �max, when 0 < � < 1=2,
the only solution is the PL solution.

Next, we compare the theoretical and numerical results for
the asymptotic behaviour in the case � ¼ 1. As shown in
Table I, the numerically obtained exponents b2 agree fairly
well with the theoretical exponents b2;th, except for q̂q and R̂R.
The reason for the somewhat poor agreement in these cases
is that we have assumed that q̂q and R̂R depend on lnð �

ln�Þ, and
evaluating logarithmic dependence numerically is difficult.
For this reason, it is more meaningful to compare the
theoretical and numerical valus of R̂R

q̂q
and �R

�q
. We find that for

R̂R
q̂q
, these values are 3 and 2.7, respectively, and for �R

�q
, they

are 2 and 1.7, respectively. We therefore conclude that the
agreement between theoretical and numerical results is fairly
good.

Now, we examine the case � ¼ 0. Note that if we
substitute � ¼ 0 into the expressions of 	c in the eq. (60) for
the case 0 < � < 1=2, 	c is an Oð1Þ constant. Thus, the
condition that 	c � 1 is not satisfied. This is the reason we
treat the cases � > 0 and � ¼ 0 separately.
Case (II): � ¼ 0

In §3, we examined the RS solution with 	 fixed. Now, we
investigate the 1RSB solution imposing the condition
SRS ¼ 0.

(a) 0 . � < 1
In this case, SRS becomes

SRS ’
q̂q�q

2
þ �

ffiffiffiffiffiffiffi
�q

p
r:

Then, from the condition SRS ¼ 0, we obtain

g1;0ð�; 	cÞ ¼ �2rð�; 	cÞ: ð62Þ

If solutions � > 0 and 	c > 0 for eqs. (29) and (62) exist,
then the 1RSB solution exists for 	 > 	c.

(b) � � 1
Here, SRS is

SRS ’ �
q̂q�q

2
þ
R̂R�q

2
þ �

ffiffiffiffiffiffiffi
�q

p
r:

Then, the condition SRS ¼ 0 becomes

g1;0ð0; 	cÞ ¼ g2;0ð0; 	cÞ þ 2rð0; 	cÞ: ð63Þ

If a solution 	c > 0 of eq. (63) exists and satisfies the
relation g2;0=g1;0 � 2, the 1RSB solution exists for 	 > 	c.

The numerical calculations for � ¼ 0 indicate that in the
�! 0 limit � tends to a finite constant, and hence in this
limit, we have case (a) above. Thus, for �� 1

�R’
1ffiffiffiffiffiffi
2

p  ð�cÞ�2 ln
1

�

� ��2
; �q¼ 2�c�R;

R̂Rc’
2

�c

ln
1

�
ln
1

�

� �3=4" #
; q̂qc¼

R̂Rc

2�c

;

��g¼ �0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
 ð�cÞ
2

r
� ln

1

�

� ��1
:

It should be noted that in the above limiting solutions for
� � 0, no coefficient of any quantity contains 	, and
therefore there is no condition on the range of 	 for which
these solutions are valid.

We have found that in the case 0 � � < 1
2
, there exists no

solution for � > �max. This is consistent with the result
derived in §4 that PL exists for 0 � � < 1

2
when 0 < 	 <1.

Combining the results obtained to this point, the learning
behaviour exhibited by our model can be summarized as
follows. When T is sufficiently small, there is a critical value
of �, �sðTÞ, above which the entropy of the RS solution
becomes negative. Thus, for � > �sðTÞ, the 1RSB solution
exists. With the 1RSB ansatz, we found that the behaviour of
the generalization error �g can be classified into the
following three categories, according to the value of �.
(1) If 0 � � < 1

2
, solutions with R < 1 exist only for a

finite range of �, ½0; �max�. In this case, there is a
critical temperature Ts. When T > Ts, the entropy of
the RS solution is positive, and this solution is AT-
stable. When T < Ts, for � > �sðTÞ, the 1RSB solution
exists. In either case, at � ¼ �max, a first-order phase
transition from the RS solution with positive entropy or
from the 1RSB solution to the PL solution takes place.

(2) If � ¼ 1
2
, �sðTÞ is defined for any temperature T , and

the 1RSB solution exists for � > �sðTÞ. Here, �g for the
1RSB solution decays to �min exponentially according
to

��g / e�3F0�;

where F0 is a constant.
(3) If � > 1

2
, for any temperature T , �sðTÞ is defined, and

the 1RSB solution exists for � > �sðTÞ. Here, �g for the
1RSB solution decays to �min as a power law with a
logarithmic correction according to

��g /
ln�

�

� � 1þ�
2��1

:

To check these theoretical results, we carried out numerical
calculations. In the next section, we give the results of these
calculations.
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6. Numerical Calculations with the Exhaustive Method

We carried out numerical calculations using the exhaus-
tive method for � ¼ 0 and � ¼ 1. We used the minimum-
error algorithm and the Gibbs algorithm for several
temperatures. We calculated the quantities q; q0;R; �g, along
with their standard deviations, and the distribution of q;PðqÞ.
For example, q and its standard deviation �q were calculated
using the formulas

q ¼
1

M�

X
�

q�; q� ¼
X
a<b

qabPaPb=
X
a<b

PaPb; ð64Þ

�q ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
�

q2� �
X
�

q�

 !2'
M�

2
4

3
5'ðM� � 1Þ

vuuut ; ð65Þ

Pa ¼ e�	Ea=
X
a

e�	Ea ; ð66Þ

where the index a runs over the 2N configurations of the
weight vectors, whose energies are Ea, q� is the thermal
average for a given example �, and M� is the number of
samples. The calculations were performed for several values
of N up to 20 with M� ¼ 200.

6.1 � ¼ 1
The i-th component of an example xi is corrupted by the

Gaussian noise �i with mean 0 and standard deviation 1.
This corresponds to the choice PðyÞ ¼ 1� 2HðyÞ. First, we

give the results for the minimum-error algorithm. In Fig. 10,
to elucidate the system size N dependence of quantities, we
display the � dependences of Rð�;NÞ and its standard
deviation �Rð�;NÞ for N ¼ 10, 15 and 17. From these
results, we found that the quantities rð�;N;N 0Þ �
j Rð�;NÞ�Rð�;N

0Þ
Rð�;NÞ j and �rð�;N;N 0Þ � j �Rð�;NÞ��Rð�;N

0Þ
�Rð�;NÞ j obtained

by the exhaustive method for N;N 0 ¼ 15 and 17 are at most
several percent and it seems that the results obtained for
N ¼ 15 are sufficient to surmise the N ¼ 1 behaviour, at
least for � up to 15. In Fig. 11, we display both the
numerical results and the theoretial results for R; q; q0 and
��g. The numerical results agree with the theoretical results
within the numerical standard deviations. In Fig. 12 we
display the � dependence of R for larger values of � in the
case N ¼ 15. We see that for � & 85, there exists only one
state. Since on theoretical grounds it is known that R tends to
1 as � goes to infinity, we can determine whether the fact
that there is just one solution is a finite size effect by
considering the value of R and determining the value of �,
�max, at which R first exceeds 1� 1

N
. Then, if the value of

�max increases with N, we can conclude that the existence of
one solution is indeed a finite size effect. We found that this
is in fact the case.

Next, we give the results obtained using the Gibbs
algorithm. With this algorithm, we considered the cases N ¼
10 and 12 for several temperatures, and we included all
states in the calculation. We found that rð�;N;N 0Þ is less
than 5% and �rð�;N;N 0Þ is less than 10% for N;N 0 ¼ 10 and

Fig. 10. The � dependences of R and �R obtained using the minimum-error algorithm for � ¼ 1. Dotted curve: N ¼ 10. Dashed curve:

N ¼ 15. Solid curve: N ¼ 17.

Fig. 11. The � dependences of several quantites obtained using the minimum-error algorithm for � ¼ 1. +: numerical results for

N ¼ 17 (where the bars indicate the standard deviations). Dashed curve: RS solution (T ¼ 0). Solid curve: 1RSB solution. In (b), q (for

the RS solution) is represened by the dashed curve and q0 (for the 1RSB solution) by the solid curve.
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12. We display both numerical and theoretical results in
Fig. 13 for R and ��g and in Fig. 14 for q and q0. First we
explain the theoretical prediction for the � dependences of
these quantities. (See Figs. 13 and 14.) �s is the value at
which the dotted curve for the RS solution and the solid
curve for the 1RSB solution coincides. For � < �s the dotted
curve is valid and for � � �s the solid curve is valid. As for
R and ��g, the numerical results agree with the theoretical
results within the numerical standard deviations. As for q
and q0, as shown in Fig. 14, the numerical results almost
agree with the theoretical results within the numerical

standard deviations, but the agreement is worse than that for
other quantities. We calculate q0 for each sample using
formula (64). We find that in general, q0 exhibits a large
finite size effect, because it is calculated for pairs of states.
Thus, when the number of states with the minimum energy
becomes small, fluctuations of q0 become very large. This is
the reason why the agreement between the numerical and the
theoretical results for q0 is worse than that for other
quantities. A relevant quantity is the distribution of q, PðqÞ.
PðqÞ is calculated as

Fig. 13. The � dependences of R and��g obtained using the Gibbs algorithm for � ¼ 1. +: numerical results (with standard deviations)

for N ¼ 12 with T ¼ 1. Dashed curve: RS solution with T ¼ 0. Dotted curve: RS solution with T ¼ 1. Solid curve: 1RSB solution.

Fig. 14. The � dependences of q and q0 obtained using the Gibbs algorithm for � ¼ 1. +: numerical results (with standard deviations)

for N ¼ 12. Dashed curve: q for the RS solution with T ¼ 0. Dotted curve: q for the RS solution with finite temperature. Solid curve:

q0 for the 1RSB solution.

Fig. 12. The asymptotic behaviour of R obtained using the minimum-error algorithm for � ¼ 1. +: numerical results for N ¼ 15 (where
the bars indicate the standard deviations). Dashed curve: RS solution. Solid curve: 1RSB solution. (a) 0 < � < 15. (b) 15 < � < 50.

(c) 50 < � < 100.
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PðqÞ ¼
X
a;b

�ðq; qabÞPaPb

* +
;

where �ðq; qabÞ is the Kronecker delta and h�i represents the
average over samples. PðqÞ is also plotted for several
temperatures, together with theoretical results, in Fig. 15.
We see that for the theoretical and numerical results the peak
values agree for T ¼ 0:15 and T ¼ 5:0, while they do not
agree for T ¼ 0:5. Since T ¼ 0:5 is near to the transition
temperature Tc from the RS to the 1RSB solutions, and then
the standard deviations of numerical results become lagre,
the disagreement of the peaks for T ¼ 0:5 is considered to be
the finite size effect.

6.2 � ¼ 0
The output by the teacher is reversed with probability

ð1� kÞ=2, where here we use k ¼ 1
2
. This corresponds to the

choice PðyÞ ¼ 1
2
sgnðyÞ. First, we give the results for the

minimum-error algorithm. We investigated the N depen-
dence of Rð�;NÞ and �Rð�;NÞ with N ¼ 10, 15, 17 and 20
obtained by the exhaustive method and found that the
quantities rð�;N;N 0Þ and �rð�;N;N 0Þ for N;N 0 ¼ 15; 17 and
20 are at most 2% and 10%, respectively. In Fig. 16, the �
dependences of several quantities are displayed for N ¼ 17,
together with theoretical results. The numerical results agree
with the theoretical results within the numerical standard
deviations up to � . �max. However, we note that numerical
data take value for � above the theoretical upper bound,

�max. This tendency is remarkable for q0. This is due to the
finite size effect mentioned above. In Fig. 17 we display the
behaviour of R for larger values of � in the case N ¼ 15. It is
seen that for � > 22, there exists only one state. In the case
N ¼ 10, this is the case for � > 25. To investigate whether
or not PL exists, we numerically computed �max using the
same method as in the case � ¼ 1. We found that, in contrast
to the case � ¼ 1, here �max decreases as a function of N.
With these results, we conclude that PL exists even for
arbitrarily large N. Theoretically, �max is found to be
approximately 9.13.

Next, we give the results for the Gibbs algorithm. In this

Fig. 15. The T dependence of PðqÞ found using the Gibbs algorithm for � ¼ 1. Histogram: numerical results for N ¼ 12 and p ¼ 60.
Solid vertical segments: 1RSB solution. Dotted vertical segments: RS solution. For T ¼ 5, no 1RSB solution exists.

Fig. 16. The � dependences of several quantites obtained using the minimum-error algorithm for � ¼ 0. +: numerical results for

N ¼ 17 (with bars indicating standard deviations). Dashed curve: RS (T ¼ 0). Solid curve: 1RSB in branch I. Dashed curve: 1RSB in

branch II. In (b), q is for the RS solution and q0 is for the 1RSB solution.

Fig. 17. The asymptotic behaviour of R obtained using the minimum-

error algorithm for � ¼ 0. +: numerical results for N ¼ 15 (with standard

deviations). Dashed curve: RS solution. Solid curve: 1RSB solution.
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algorithm, we carried out calculations for N ¼ 10 and 12
with several temperatures. We included all states in the
calculation. We found that rð�;N;N 0Þ is less than 5% and
�rð�;N;N 0Þ is less than 10% for N;N 0 ¼ 10 and 12. In
Fig. 18, the � dependences of R and ��g are plotted for
T ¼ 1:0. The numerical results agree with the theoretical
results within the numerical standard deviations up to � .

�max for R and up to � . 5 for ��g. Also, the � dependences
of q and q0 are displayed in Fig. 19 for T ¼ 0:15, 0.5 and
5.0. As shown in Fig. 19 numerical results agree with the
theoretical results within the numerical standard deviations
as long as � . �max for T ¼ 0:15 and 0.5 and any � in the
figure for T ¼ 5:0. The disagreement between numerical and

theoretical results for � around and above �max is due to the
finite size effect as before. Concerning q0, since a relevant
quantity is PðqÞ, we calculated it at � ¼ 5 for several
temperatures. In Fig. 20, we show the numerical results for
PðqÞ together with the theoretical results. We see that the
positions of the peak values for T ¼ 0:15 and 5.0 agree for
the theoretical and numerical results. The disagreement for
T ¼ 0:5 is attributed to the finite size effect as before.

In conclusion, in both the cases � ¼ 1 and 0, although
there exist finite size effects, as is reflected in the behaviour
of q0, as a whole, the theoretical results and numerical
results agree fairly well, in which theoretically we have
employed the RS and the 1RSB ansatz.

Fig. 19. The � dependences of q and q0 obtained using the Gibbs algorithm for � ¼ 0. +: numerical results (with standard deviations)

for N ¼ 12. Dashed curve: RS solution for T ¼ 0. Dotted curve: RS solution for finite temperature.Solid curve: 1RSB solution.

Fig. 20. The T dependence of PðqÞ obtained using the Gibbs algorithm for � ¼ 0. Here, Tc ’ 0:7. Histogram: numerical results for

N ¼ 12 and p ¼ 60. Solid line: 1RSB solution. Dotted line: RS solution. For T ¼ 5, no 1RSB solution exists.

Fig. 18. The � dependences of R and ��g found using the Gibbs algorithm for � ¼ 0 and T ¼ 1:0. +: numerical results for N ¼ 12.
Dashed curve: RS solution for T ¼ 0. Dotted curve: RS solution for T ¼ 1:0. Solid curve: 1RSB solution.
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7. Summary and Discussion

In this paper, we studied a model of supervised learning in
which perceptrons with Ising weights learn from stochastic
examples. Using the replica method, we obtained the
necessary and sufficient conditions for the existence of PL
and the conditions for learning curves that exhibit power law
forms in the asymptotic region as �!1. These conditions
are given in terms of �, which characterizes a certain local
property of the rules by which examples are drawn. First, let
us summarize the results in more detail.

The basic ingredients of the model are as follows. When
an input vector x is given, the probability prðþ1jxÞ that the
teacher returns an output þ1 is a function of the inner
product between the input x and the teacher’s weight wo and
takes the form

prðþ1jxÞ ¼ PðuoÞ ¼
1þ PðuoÞ

2
;

uo ¼ ðx � woÞ=
ffiffiffiffi
N

p
; jxj ¼

ffiffiffiffi
N

p
; jwoj ¼

ffiffiffiffi
N

p
:

Further, we stipulate PðyÞ to be a non-decreasing function
that behaves near y ¼ 0 as PðyÞ ’ a sgnðyÞjyj� (� � 0). For
simplicity, we choose PðyÞ to be an odd function. As the
learning algorithm, we used the Gibbs algorithm.

With these basic ingredients, we obtained the following
results.

Conditions for PL

The necessary and sufficient conditions for the existence
of perfect learning are the following.
(1) 0 � � < 1=2 when 0 < 	 <1, where 	 is the inverse

temperature.
(2) Deterministic case. That is, the target relation is

deterministic obeying the perceptron rule, and the
alogorithm is the minimum-error algorithm, i.e. the
Gibbs algorithm with 	!1.

Behaviour of learning curves

With the RS and the 1RSB ansatz, we found that the
behaviour of the generalization error �g can be classified into
the following three categories, according to the value of �.
(1) For 0 � � < 1

2
, at � ¼ �max there is a first-order phase

transition from the RS solution with positive entropy or
from the 1RSB solution to the PL solution.

(2) For � ¼ 1
2
and large �, the 1RSB solution appears, and

�g for this solution decays exponentially according to

��g / e�3F0�;

where F0 is a constant.
(3) For � > 1

2
and large �, the 1RSB solution appears, and

�g for this solution decays according to a power law
with a logarithmic correction:

��g /
ln�

�

� � 1þ�
2��1

:

To check these results, we carried out several numerical
calculations, in which we solved the saddle point equations
for the RS and 1RSB solutions and directly computed the
concerned quantities using enumeration methods. The latter

results show fairly good agreement with the former results.
As mentioned in the Introduction, Seung also investigated
the existence of PL in the situation that the weights are Ising
and the rule to be learnt is stochastic,13) employing the
annealed approximation. He classified the learning beha-
viour of Ising networks by introducing two exponents y and z
used in the following manners. The exponent y is defined as
follows. Let �ð�gÞ be the logarithm of the number of weight
vectors whose generalization errors have a value �g. Then,
he assumed that when ��g ¼ �g � �min is small, �ð�gÞ
increases as �ð�gÞ � Oðð��gÞyÞ, where �min is the minimum
value of the generalization error, obtained with the unique
optimal weight vector wo. The exponent z characterizes
edðw;woÞ, which is the probability that the output for the
weight vector w differs from that for the optimal weight
vector wo. He also assumed that edðw;woÞ scales as
edðw;woÞ � Oðð��gÞzÞ. He derived upper bounds for the
generalization errors and found that the behaviour of the
learning curves depends on the values of y and z. His results
are summarized as follows.
(1) If yþ z > 2, there is a first-order transition.
(2) If yþ z < 2, the generalization error decays according

to a power law: ��g � ��
1

2�y�z .

(3) If yþ z ¼ 2, there is a second-order transition, or the
generalization error decays exponentially.

The exponents y and z in Seung’s model correspond to 2
1þ�

and 1
1þ� ¼

y
2
, respectively, in our model. Therefore, it is

found that our results concerning typical learning behaviour
are consisitent with those of Seung’s results, which are the
upper bounds of the learning curves.

Regarding the condition for the existence of PL, we note
that for 	 ¼ 1 (i.e. T ¼ 0), PL does not exist for learning
from stochastic examples. This follows from the fact that for
T ¼ 0 and for large � there exists no student whose outputs
are the same as the teacher’s, because the teacher makes
mistakes. Thus, the measure of weight vectors whose
energies are 0 vanishes for large �. However, for T ! 0,
we consider the weight vectors of the minimum energy, and
there is at least one solution of w ¼ wo when � is sufficiently
large. Hence, PL is possible in the limit T ! 0.

As a student learns, its weight vector tends to wo.
Examples that import a crucial influence on learning are
those for which uo ¼ ðx � woÞ=

ffiffiffiffi
N

p
� 0. The more slowly the

probability PðuÞ varies around u ¼ 0 for large �, the more
difficult it is for students to realize the optimal vector wo.
This is the reason that it becomes more difficult to realize PL
as � increases.
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Appendix A: Derivation of the Free Energy

Here, we derive the free energy using the replica method.
Introducing n replicas, the partition function Zn becomes
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Zn ¼ Tr
Yn
a¼1

e�	
Z 0

�1
d�a� þ

Z 1

0

d�a�

� � Z 1

�1

dya�

2
exp½�iya�ðr

o
�u

a
� � �

a
�Þ�; ðA�1Þ

where ua� ¼ ðx� � waÞ=
ffiffiffiffi
N

p
and Tr represents the summation over all configurations of wa; a ¼ 1; � � � n: Defining the overlap

between the weight vector of a student and the optimal weight vector as Ra ¼ 1
N

PN
j¼1 w

a
j w
o
j and the overlap between the

weight vectors of students as qab ¼ 1
N

PN
j¼1 w

a
j w

b
j , and using the relations

�
XN
j¼1
ðx�j Þ

2 � N

 !
¼
Z i1

�i1

d ~K�K�

2i
exp � ~K�K�

XN
j¼1
ðx�j Þ

2 � N

 !" #
;

1 ¼
Y
a

Z
dRa

Z i1

�i1

NdR̂Ra

2i
exp �NR̂Ra Ra �

1

N

XN
j¼1

wa
j w
o
j

 !" #
;

1 ¼
Y
a<b

Z
dqab

Z i1

�i1

Ndq̂qab

2i
exp �Nq̂qab qab �

1

N

XN
j¼1

wa
j w

b
j

 !" #
;

we take the average over ro� and x� and obtain the following expression for hZni�p;wo :

hZni�p;wo ¼
Z Y

a<b

dqab
Ndq̂qab

2i

" # Y
a

dRa NdR̂R
a

2i

" #
eNG; ðA�2Þ

where

G ¼
p

N
G1ðfqabg; fRagÞ þ G2ðfq̂qabg; fR̂RagÞ �

X
a

R̂aRaRa �
X
a<b

q̂qabqab; ðA�3Þ

with

eG1 ¼
Y
a

e�	
Z 0

�1
d�a þ

Z 1

0

d�a
� �Z 1

�1

dya

2

" #

� exp �
1

2

X
a

ðyaÞ2 �
X
a<b

qabyayb þ i
X
a

ya�a

" #
5

X
a

yaRa

 !
; ðA�4Þ

eG2 ¼ Tr exp
X
a

R̂Rawa þ
X
a<b

q̂qabwawb

" #
; ðA�5Þ

5ðyÞ �
1ffiffiffiffiffiffi
2

p
Z
d�e�

1
2
ð��iyÞ2 1�

1

2
½Pð�Þ � Pð��Þ�

� �
:

Here Tr represents the summation over wa; a ¼ 1; � � � n. In the above expressions, we set ~KK� ¼ 1=2, which is the optimal
value. When Pð�yÞ ¼ �PðyÞ, 5ðyÞ becomes

5ðyÞ ¼
1ffiffiffiffiffiffi
2

p
Z
d�e�

1
2
ð��iyÞ22Pð��Þ: ðA�6Þ

The general form of the free energy per synaptic weight is given by

f ¼ �
hln Zi�p;wo

N	
¼ �

G

n	
: ðA�7Þ

Appendix B: Derivation of the Limiting Forms of the Expressions for q̂q and R̂R as q ! 1 and R ! 1

In this appendix, we briefly derive the asymptotic relations for q̂q and R̂R. First, we consider the case 0 < 	 <1. Equation
(12) for q̂q can be rewritten as

q̂q ¼
�Q

1� q

ð1� e�	Þ2ffiffiffiffiffiffi
2

p ðA� BÞ; ðB�1Þ

where

A ¼
Z
due�Q

2u2=2 hðuÞ
2

~HHðuÞ2
; ðB�2Þ

B ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ Q2

p 1ffiffiffiffiffiffi
2

p
Z 1

0

DzPð"zÞ
Z 1

�1
DtH2 � t þ

1

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

2þ Q2

s
z

0
@

1
A

2
4

3
5; ðB�3Þ
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with H2ðuÞ ¼ 1
~HHðuÞ2 �

1
~HHð�uÞ2 , � ¼

�ffiffiffiffiffiffiffiffiffiffi
1þ2�2

p and " ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
Q2þ2�2
2þQ2

q
. It follows that H2ðuÞ is a strictly increasing odd function and

0 < jH2ðuÞj < e2	 � 1 for u 6¼ 0. Thus, for � > 0, Pð"zÞ can be replaced by að"zÞ� in eq. (B�3), and we obtain

B ’
1

2
ffiffiffi


p
Z 1="

0

Dzað"zÞ�
Z 1

�1
DtH2 � t þ

1ffiffiffi
2

p
�
z

� �� �
þ OðHð1="ÞÞ:

As q and R tend to 1, " tends to 0, and thus B! 0. Also, for T > 0, A is finite in these limits. Thus, in these limits we have
A� B ’ A. Therefore, for � > 0 we obtain

q̂q ’
�ffiffiffiffiffiffiffi
�q

p g1;�ð�; 	Þ; ðB�4Þ

where

g1;�ð�; 	Þ ¼
1ffiffiffiffiffiffi
2

p
Z
du ~’’ðuÞ2; ðB�5Þ

with �q � 1� q. For the case � ¼ 0, from eq. (B�3), we obtain

B ’
1

2
ffiffiffi


p
Z 1

0

Dzk

Z 1

�1
DtH2

�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2�2

p t þ
1ffiffiffi
2

p
�
z

� �" #
¼ k

Z
du

hðuÞ2
~HHðuÞ2

½1� 2Hðu=�Þ�;

where k ¼ limy!þ0 PðyÞ. Then, we obtain

A� B ’
Z
du

hðuÞ2

~HHðuÞ2
½1� k þ 2kHðu=�Þ�;

thus,

q̂q ’
�ffiffiffiffiffiffiffi
�q

p g1;0ð�; 	Þ; ðB�6Þ

where

g1;0ð�; 	Þ �
1ffiffiffiffiffiffi
2

p
Z
du ~’’ðuÞ2½1� k þ 2kHðu=�Þ�: ðB�7Þ

Now, we derive approximate expressions for R̂R. The eq. (13) can be rewritten as

R̂R ¼
�

q�

ð1� e�	Þffiffiffiffiffiffi
2

p D; ðB�8Þ

D ¼
Z
due�Q

2u2=2 hðuÞ
~HðuÞHðuÞ

wðuÞ ¼ �
Z 1

�1
DxH1ð�xÞ

Z 1

0

DyPð�yÞe��xyðyþ �xÞ; ðB�9Þ

where

H1ðxÞ ¼
1

~HHðxÞ
þ

1

~HHð�xÞ
; � ¼

�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ Q2

p ; � ¼
Qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2 þ Q2
p Rffiffiffi

q
p :

For � > 0, D is given by

D ¼
�ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Q2

p Z 1

0

DyP0ð�zÞ 
1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2

p Rffiffiffi
q

p
zffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ Q2
p

 !
;

where � ¼
ffiffiffiffiffiffiffiffiffiffi
Q2þ�2
1þQ2

q
and  ðzÞ ¼

R1
�1 DtH1ð�t � zÞ. Since  ðzÞ is bounded, D can be evaluated as follows.

D ’ �
Z 1=�

0

Dza�ð�zÞ��1 
zffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2

p
 !

þ OfHð1=�Þg

" #
’ �a����1

Z 1

0

Dzz��1 
zffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2

p
 !

:

Therefore, we obtain

R̂R ’ �
��ffiffiffiffiffiffiffi
�q

p g2;�ð�; 	Þ; ðB�10Þ

where

g2;�ð�; 	Þ �
a�ffiffiffiffiffiffi
2

p ð1� e�	Þ
1

�
ð1þ ��2Þð��1Þ=2

Z 1

0

Dzz��1 
zffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2

p
 !

: ðB�11Þ

For � ¼ 0, from eq. (B�9), we obtain
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D ¼ �
Z 1

�1
DxH1ð�xÞ

kffiffiffiffiffiffi
2

p þ �
Z 1

0

Dye��xyP0ð�yÞ
� �

:

We assume that jP0ðyÞj is bounded.17) Then the second term in the parenthesis is Oð�Þ, and it can be ignored. This yields

D ’
k�ffiffiffiffiffiffi
2

p
Z 1

�1
DxH1ð�xÞ ¼

2kffiffiffiffiffiffi
2

p
�ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2

p Z 1

�1
Dx

1

~HH
�xffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2

p
 ! :

Thus, we obtain

R̂R ’ �
1ffiffiffiffiffiffiffi
�q

p g2;0; ðB�12Þ

where

g2;0 ¼
kð1� e�	Þ



1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2

p Z 1

�1
Dx

1

~HH
�xffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2

p
 ! :

ðB�13Þ

Now, let us consider the case 	 ¼ 1. In this case, ~’’ðuÞ becomes ’ðuÞ ¼ H0ðuÞ
HðuÞ . Therefore, from eq. (12) we obtain

q̂q ¼
�

�q

Z
Du’ðu=QÞ2Eðu=QÞ ’

�

�q
ðA0 � B0Þ;

where

A0 ¼
Z 1

0

Duðu=QÞ2 ¼
1

2Q2
;

B0 ¼
�ffiffiffiffiffiffi
2

p
Q2

Z 1

0

DyPð�yÞ

� 2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p
�2yþ

ffiffiffiffiffiffi
2

p
�2 þ ð1� �2Þ�2y2
/ 0

e
1��2
2

y2 1� 2H
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p
y

" #h i� �
ðB�14Þ

’
a



�3þ�

Q2
þ
1

Q2

Z 1

0

DyPðyÞy2: ðB�15Þ

Thus, A0 � B0 ’ 1
Q2

R1
0
Dyð1� PðyÞÞy2, which gives

q̂q ’
�

ð�qÞ2
g3; ðB�16Þ

where

g3 �
Z 1

0

Dyy2½1� PðyÞ�: ðB�17Þ

If PðuÞ ¼ 1 (i.e. in the deterministic case), this is 0. We discuss this case later. Similarly, from eq. (13) for R̂R, we obtain

R̂R ’
�

�Q2
2�4ffiffiffiffiffiffi
2

p
Z 1

0

DyPð�yÞy� �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p Z 1

0

DyPðyÞð1� y2Þ 1� 2H
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p
�

y

 !" #( )

’
�

�q
g4; ðB�18Þ

where

g4 �
Z 1

0

DyPðyÞðy2 � 1Þ: ðB�19Þ

If PðyÞ is not constant for y > 0, the integral here is positive. If PðyÞ is constant for y > 0, which can be the case when � ¼ 0,
the integral is 0. In the latter case, i.e. in the case that PðyÞ ¼ k for y > 0, we have to consider higher order terms. From eq.
(14), wðuÞ is calculated as

wðuÞ ¼ e�v
2=2

Z 1

0

Dyk½ðyþ vÞe�vy þ ðy� vÞevy� ¼ e�v
2=2 2kffiffiffiffiffiffi

2
p ;

where v ¼ � Rffiffi
q

p
�
u. Thererore, from eq. (13), R̂R is calculated as
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R̂R ¼ �
�ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q� R2
p Z

~DDu’ðuÞwðuÞ ’ �
�

�

Z
duffiffiffiffiffiffi
2

p ’ðuÞe�
u2

2�2
2kffiffiffiffiffiffi
2

p

’
�ffiffiffiffiffiffiffi
�q

p
k



1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2

p Z
Dy

1

H
�yffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2

p
 ! :

Thus, we obtain

R̂R ’
�ffiffiffiffiffiffiffi
�q

p g5ð�Þ; ðB�20Þ

where

g5ð�Þ �
k



1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2

p Z
Dy

1

H
�yffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2

p
 ! :

ðB�21Þ

Finally, we consider the deterministic (PðuÞ ¼ 1) case. In this case, � ¼ 0, k ¼ 1, q ¼ R and q̂q ¼ R̂R hold. Then, we obtainffiffiffiffiffiffiffiffi
1��2

p
� ¼ 1

Q
and Eðu=QÞ ¼ 2Hðu=QÞ. Thus, eq. (12) becomes

q̂q ¼
2�

1� q

Z
Du

hðu=QÞ2

Hðu=QÞ
’

�ffiffiffiffiffiffiffi
�q

p
2ffiffiffiffiffiffi
2

p
Z
Du

hðuÞ
HðuÞ

¼
�ffiffiffiffiffiffiffi
�q

p g3;D; ðB�22Þ

where

g3;D ¼
2ffiffiffiffiffiffi
2

p
Z
Du

hðuÞ
HðuÞ

: ðB�23Þ

Also, since v ¼ �u, from eq. (12), we obtain

R̂R ¼
2�

1� q

Z
Du

hðu=QÞ2

Hðu=QÞ
¼ q̂q: ðB�24Þ

Appendix C: Asymptotic Form of I for � � 1 and R̂R � 1

I is given by

I ¼
Z
Dt ln½2coshð

ffiffiffî
qq

p
t þ R̂RÞ� ’ R̂Rþ

hð�Þ
��

þ I1; ðC�1Þ

where

I1 ¼ I�1 þ Iþ1 ;

I�1 ¼
Z 1

��
Dt ln½1þ e�2

ffiffî
qq

p
ðt��Þ� ¼

ffiffiffiffiffiffi
2

p
hð�Þ

Z 1

0

Dxe�x� lnð1þ e�2
ffiffî
qq

p
xÞ;

with � ¼ R̂R=
ffiffiffî
qq

p
and � ¼ R̂R

2q̂q
. The following relations can be demonstrated rigorously:

I�1 ¼
X1
n¼1

ð�1Þn�1

n
e2q̂qn

2�2R̂RnH �
n

�
� 1

� �� �
: ðC�2Þ

For 0 < � < 1, Hð�ð n� � 1ÞÞ and Hð�ð
n
� þ 1ÞÞ in (C�2) can be approximated by

hð�ð n��1ÞÞ
�ð n��1Þ

and
hð�ð n�þ1Þ
�ð n�þ1Þ

, respectively. Therefore,
I1 is given approximately as

I1 ’
X1
n¼1

ð�1Þn�1

n
hð�Þ

1

�
n

�
� 1

� � þ 1

�
n

�
þ 1

� �
2
664

3
775 ¼ 2�� hð�Þcð�Þ;

where cð�Þ �
P1

n¼1
ð�1Þn�1

n2
1

1�ð�=nÞ2 . When � is not an integer, we have

cð�Þ ¼


2� sinð�Þ
�

1

2�2
:

Thus, we obtain

I ’ R̂Rþ
hð�Þ
��

½1þ 2�2cð�Þ� ¼ R̂Rþ
 ð�Þhð�Þ
��

for 0 < � < 1;
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where

 ð�Þ � 1þ 2�2cð�Þ ¼
�

sinð�Þ
:

Noting that cð0Þ ¼ 2=12 and  ð0Þ ¼ 1 we find that I behaves near � ¼ 0 as

I ’ R̂Rþ
hð�Þ
��

(for �  0).

For � � 1, I�1 can be expressed as

I�1 ’
Xn0
n¼1

ð�1Þn�1

n
e2q̂qn

2�2R̂Rn 1� H ��
n

�
� 1

� �� �� �
þ
hð�Þ
�

X1
n¼n0þ1

ð�1Þn�1

n

1

n

�
� 1

; ðC�3Þ

where n0 ¼ ½�� (i.e., n0 is the largest integer that does not exceed the value of �). Let us compare the terms in the eq.
(C�3). Let us assume 1 � n1 < n2 � n0. Then we have

e2q̂qn
2
1
�2R̂Rn1=e2q̂qn

2
2
�2R̂Rn2 ¼ e4q̂qðn2�n1Þð��ðn2�n1Þ=2Þ > e4q̂qðn2�n1Þðn0�n1Þ:

Thus, we obtain

e2q̂qn
2
1
�2R̂Rn1 � e2q̂qn

2
2
�2R̂Rn2 for q̂q� 1:

Note that q̂q� 1 is satisfied when R̂R� 1 as long as � ¼ R̂R
2q̂q

is

bounded from above. Further, since e��
2=2=e2q̂qn

2�2R̂Rn ¼
e�2q̂qðn��Þ

2

; each term in the first summation in the eq.
(C�3) is of lower order than hð�Þ=� for � � 1. Thus, Iþ1 and
the second summation in I�1 are of higher order than the
terms in the first summation in I�1 . Therefore, for 1 < � < 2,
we find

I�1 ’ e�2ðR̂R�q̂qÞ þ
2hð�Þ�
�

c�ð�Þ; Iþ1 ’
2hð�Þ�
�

cþð�Þ;

where

c�ð�Þ �
1

2�

X1
n¼1

ð�1Þn�1

n

1

n

�
� 1

:

Thus,

I1 ’ e�2ðR̂R�q̂qÞ þ
2hð�Þ�
�

cð�Þ;

where cð�Þ ¼ c�ð�Þ þ cþð�Þ. Therefore,

I ’ R̂Rþ e�2ðR̂R�q̂qÞ þ
hð�Þ ð�Þ
��

for 1 < � < 2:

For � ¼ 1, we obtain

I1 ’ e�2ðR̂R�q̂qÞ=2þ
2hð�Þ�
�

c2ð�Þ;

where c2ð�Þ is defined as

c2ð�Þ�
1

2�

X1
n¼2

ð�1Þn�1

n

1

n

�
� 1

þcþð�Þ ¼ cð�Þ �
1

2ð1� �Þ
:

Thus,

I ’ R̂Rþ e�2ðR̂R�q̂qÞ=2 for � ¼ 1:

Here, we have used the facts that c2ð�Þ is analytic at � ¼ 1
and that c2ð1Þ ¼ 0.

For � � 2, we obtain

I�1 ’ e�2ðR̂R�q̂qÞ �
1

2
e�4ðR̂R�2q̂qÞH �

2

�
� 1

� �� �
:

Therefore we have

I1 ’ I�1 ’ e�2ðR̂R�q̂qÞ �
1

2
b�e

�4ðR̂R�2q̂qÞ;

where

b� ¼ 1 for � > 2; b2 ¼ 1=2:

Thus,

I ’ R̂Rþ e�2ðR̂R�q̂qÞ �
1

2
b�e

�4ðR̂R�2q̂qÞ for � � 2:

In summary, up to second order in I, we obtain

I ’
R̂Rþ

hð�Þ ð�Þ
��

(for 0 . � < 1),

R̂Rþ a�e
�2ðR̂R�q̂qÞ (for 1 � �),

8><
>: ðC�4Þ

where

 ð�Þ � 1þ 2�2cð�Þ ¼
�

sinð�Þ ðC�5Þ

and a1 ¼ 1=2 and a� ¼ 1 for � > 1.

Appendix D: Demonstration that SPL ¼ 0 and
fPL ¼ ��min.

As seen from eq. (28), when q! 1 and R! 1 for 0 <
	 <1 and for any � and any �, SRS can be expressed as

SRS ¼ �
q̂q�q

2
� ð1��RÞR̂Rþ �

ffiffiffiffiffiffiffi
�q

p
rð�; 	Þ þ I: ðD�1Þ

We consider the case in which 0 < 	 <1 and 0 � � < 1=2.
For PL, R ¼ q ¼ 1; � ¼ 1 and � ¼ Q ¼

ffiffiffiffiffiffiffi
�q

p
. Therefore,

here we have

q̂q ¼
�ffiffiffiffiffiffiffi
�q

p g1;�ð1; 	Þ; ðD�2Þ

R̂R ¼ �ð�qÞð��1Þ=2g2;�ð1; 	Þ: ðD�3Þ

For 0 < 	 <1 and � � 0, g1;�ð1; 	Þ and g2;�ð1; 	Þ are finite.
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Hence, with � ¼ R̂R
2q̂q
¼ g2;�

2g1;�
ð�qÞ�=2, we find for � > 0, � ’ 0

and for � ¼ 0, � ¼ g2;0
2g1;0

, which is finite. Next, we determine
an approximate expression for I. In the case � > 0, since
� ¼ 0, we obtain from (C�4)

I ’ R̂Rþ
hð�Þ
��

¼ R̂Rþ
2R̂R

�3
hð�Þ:

Thus, we find

S ¼ �
1

2
g1;��

ffiffiffiffiffiffiffi
�q

p
þ g2;��ð�qÞ

1þ�
2 þ

2R̂R

�3
hð�Þ þ �r

ffiffiffiffiffiffiffi
�q

p
:

From eqs. (D�2) and (D�3), we obtain

q̂q��1R̂R ¼ ð�g1;�Þ��1�g2;� � C:

From this we find

R̂R

�3
¼ C�

1
1�2��

4��1
1�2� :

Then, since �q ¼ 0; � ¼ 1 and g1;�; g2;�, r and C are finite,
we obtain S ¼ 0: For the case � ¼ 0, we have to determine
the value of �. As discussed in §3, when � is finite, � ¼ 1

1þ�2
[as seen from eq. (30)]. In the case considered presently,
� ¼ 1, and therefore � ¼ 1=2. Thus, we obtain

I ’ R̂Rþ
hð�Þ
�

:

For � ¼ 0, using an argument similar to that used above for
� > 0, we can again obtain S ¼ 0. Now, let us determine
heti ¼ ��e�	J. J is given by

J ¼
Z
Du

Hðu=QÞ � 1
~HHðu=QÞ

Z
Dy½1� Pð�yþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p
uÞ�

¼
Z
Du

Hðu=QÞ � 1
~HHðu=QÞ

½1� PðuÞ�

¼ �e	
Z 1

0

Du½1� PðuÞ� ¼ �e	�min:

Thus, heti ¼ ��e�	J ¼ ��min. Finally, we obtain fPL ¼
heti � TSPL ¼ ��min.

Appendix E: Asymptotic Forms of fRS and SRS for
� � 1 ðT � 1Þ.

In this appendix, we derive the asymptotic forms of the
free energy and the entropy for the RS solution in the case
	� 1. The free energy fRS is expressed as

� 	fRSðq; q̂q;R; R̂R; 	Þ ¼ �
q̂q

2
ð1� qÞ � RR̂Rþ �K þ I; ðE�1Þ

K �
Z
Dy2PðyÞ

Z
Du ln ~HHðYÞ; I �

Z
Dt ln½2 coshð

ffiffiffî
qq

p
t þ R̂RÞ�;

where Y ¼
ffiffiffiffiffiffiffiffi
q�R2

p
u�Ryffiffiffiffiffiffi

1�q
p . By defining Ka and Kb as

Ka �
Z
Dy2PðyÞ

Z
DuHð�YÞ ¼ �min þ 2

Z 1

0

DyPðyÞH
Ryffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� R2

p
� �

¼ �g;

Kb �
Z
Dy2PðyÞ

Z
DuHðYÞHð�YÞ ¼ Q

Z
~DDuHðuÞHð�uÞ;

K and fRS can be expressed as

K ¼ �	 Ka �
	

2
Kb

� �
þ Oð	3Þ;

�	fRS ¼ �
q̂q

2
ð1� qÞ � RR̂Rþ I � �	 Ka �

	

2
Kb

� �
þOð	3Þ

’ �
q̂q

2
ð1� qÞ � RR̂Rþ I � �	�g þ

�	2

2
Kb:

The entropy SRS is expressed as

SRS ¼ �
q̂q

2
ð1� qÞ � RR̂Rþ I þ �K � �	e�	J; ðE�2Þ

J ¼
Z
Dy2PðyÞ

Z
Du

HðYÞ � 1
~HHðYÞ

:

Then, defining L as L ¼ K � 	e�	J, we have

L ¼ �
	2

2
Kb þ Oð	3Þ:

Thus, we obtain

SRS ¼ �
q̂q

2
�q� RR̂Rþ I �

�	2

2
Kb þ Oð	3Þ:

For �q� 1 and �R� 1, the following relations hold:
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Ka ¼ �g ’ �min þ
2s

ð1þ �Þ
ffiffiffiffiffiffi
2

p ð2�RÞ
1þ�
2 ; Kb ’

ffiffiffiffiffiffiffi
�q

p


ffiffiffi
2

p :

Therefore, K, fRS and SRS can be expressed as

K ¼ �	 �min þ
2s

ð1þ �Þ
ffiffiffiffiffiffi
2

p ð2�RÞ
1þ�
2 �

	
ffiffiffiffiffiffiffi
�q

p

2
ffiffiffi
2

p
� �

; ðE�3Þ

�	fRS ¼ �
q̂q

2
ð1� qÞ � RR̂Rþ I � �	 �min þ

2s

ð1þ �Þ
ffiffiffiffiffiffi
2

p ð2�RÞ
1þ�
2 �

	
ffiffiffiffiffiffiffi
�q

p

2
ffiffiffi
2

p
� �

; ðE�4Þ

SRS ¼ �
q̂q

2
�q� R̂RRþ I � �	2

ffiffiffiffiffiffiffi
�q

p

2
ffiffiffi
2

p : ðE�5Þ
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